Seamless Client Onboarding – Hardware and Software Synergy – interview with Kenneth Robinson

A crucial aspect of NETINT’s value proposition is its proactive and holistic customer support, from the pre-purchase phase to onboarding and the post-purchase journey. NETINT streamlines this transition with seamless hardware installation facilitated by compliance with U.2 and PCIe standards and intuitive software integration via tools like FFmpeg and GStreamer, and an SDK.

A recent conversation with Kenneth Robinson, NETINT’s Manager of Field Application Engineering, detailed how he and his team support NETINT customers through the buying, onboarding and implementation process and beyond. By way of background, Robinson joined NETINT in January 2023 and brings substantial expertise from his prior tenure at a video gateway development company. During the conversation, he described how his team’s adeptness with scripting and debugging simplifies and accelerates customer deployments.

The discussion also spotlights the efficiency of NETINT’s transcoder management, GStreamer’s increased usage among NETINT customers due to its hyperthreaded efficiency, and several strategic recommendations for potential server buyers. Robinson’s insights solidify NETINT’s reputation as a client-centric enterprise, leveraging both its technological prowess and dedicated human capital.

From Jan Ozer

This interview is with Kenneth Robinson, NETINT’s manager of field application engineering. We discussed how Kenneth and his team help get NETINT customers up and running, including hardware and software installation and the operation of software like GStreamer and FFmpeg.

Seamless Client Onboarding - Hardware and Software Synergy - Kenneth Robinson from NETINT

Jan:
Kenneth, tell us a little bit about yourself. What’s your background, and how long have been with NETINT?

Kenneth:
I’ve been with NETINT since January of this year (2023). Prior to that, I worked for a company that developed video gateways for big MSOs for installation in hotels and other uses. I ran a team of quality engineers and managed the support team there as well.

Seamless Client Onboarding - Hardware and Software Synergy - Kenneth Robinson from NETINT

Jan:
So, you’re comfortable with video and video-related technologies?

Kenneth:
Oh yes. And familiar with a lot of different ways to deliver video, like streaming and multicast.

Seamless Client Onboarding - Hardware and Software Synergy - Kenneth Robinson from NETINT

Jan:
What’s the typical skillset of your FAE team?

Kenneth:
They are software people. They understand software and debugging software and write scripts to help customers test or debug different issues. So very good communicators. They work with our customers to make sure that NETINT cards benefit them in the way that they are supposed to..

Seamless Client Onboarding - Hardware and Software Synergy - Kenneth Robinson from NETINT

Jan:
What do you see as your role in the company?

Kenneth:
I see it as ensuring that our customers get the support they need in a timely manner and making sure the transition from their current transcoders to NETINT transcoders happens smoothly, quickly, and efficiently. And that any roadblocks are removed in a very timely manner for them.

Supporting New Customer Installations

Seamless Client Onboarding - Hardware and Software Synergy - Kenneth Robinson from NETINT

Jan:
How’s the typical process work? Do you start when customers are evaluating NETINT products, or after they decide to purchase and deploy them?

Kenneth:
Both situations. Often the sales team will include me in a customer call to learn exactly how they want to use our products and to make sure we can deliver what they need. And then the other half is usually after a customer buys one of our products.

Seamless Client Onboarding - Hardware and Software Synergy - Kenneth Robinson from NETINT

Jan:
How does that work? When a customer buys a product, what happens? It gets shipped, and they receive it. How do they get the software and documentation?

Kenneth:

We know they’ve received the product based on the tracking number. Then we’ll reach out to the customer and send links to our documentation portal with the software SDK. This has the installation guide, integration guides, application notes, and everything they need to install and get up and running. And then we’ll usually follow up every couple of weeks or so just to make sure the process is going smoothly.

But, if at any point the customer has a question, they can reach out to us, and we will be happy to help them

Hardware Installation

Figure 1. NETINT offers products in two form factors, U.2 and PCIe.
Seamless Client Onboarding - Hardware and Software Synergy - Kenneth Robinson from NETINT

Jan:
What’s the hardware installation like?

Kenneth:

So, the hardware is very simple. We have two form factors. We have the PCIe form factor, which is just like any network card or GPU that you just install. And then there’s the U.2 form factor, which is the same as a hard drive. So, there’s nothing special required or special tools or knowledge; if you’ve worked on a computer before, you should be able to install either form factor.

 

Seamless Client Onboarding - Hardware and Software Synergy - Kenneth Robinson from NETINT

Jan:
In the nine months you’ve been here, what types of incompatibilities have you seen with the servers in the field?

Kenneth:

We haven’t seen any incompatibilities. Our products have worked on every server that we’ve tried because we follow the different standards for the U.2 and PCIe form factors.

Software Installation and Operation

Figure 2 - The Quadra Server - software architecture for controlling the Quadra Server
Figure 2. You can control all transcoders with FFmpeg, GStreamer, or the API (libxcoder).
Seamless Client Onboarding - Hardware and Software Synergy - Kenneth Robinson from NETINT

Jan:
So, the hardware installation is straightforward. What’s the software installation like?

Kenneth:

The software is relatively easy. We work with FFmpeg and GStreamer, but our software code is not pushed into the repository. So, part of our SDK is a patch that you apply and then compile FFmpeg or GStreamer, though we have installation scripts that will automate that process for you. If you just want to run a quick test, the installation scripts are very good and will get you up and running in a matter of minutes.

We also have an API, so the customer can access the cards directly and not rely on FFMPEG or Gstreamer.

Seamless Client Onboarding - Hardware and Software Synergy - Kenneth Robinson from NETINT

Jan:
If you install multiple cards, how does the software distribute jobs among those cards?

Kenneth:

There are two ways. You can specify the exact card you want to use as the encoder or decoder. Or, you can allow a resource manager to manage that, and it will send each job to whichever decoder or encoder has the capacity.

FFmpeg, Gstreamer, or API?

Seamless Client Onboarding - Hardware and Software Synergy - Kenneth Robinson from NETINT

Jan:
In terms of software control, what’s the typical customer doing? We’ve got GStreamer, FFmpeg, and the API. What percentage are using each alternative?

Kenneth:

The majority is FFmpeg and, after that, the API. Then there’s a small number that use GStreamer, although GStreamer is slowly getting more popular.

Seamless Client Onboarding - Hardware and Software Synergy - Kenneth Robinson from NETINT

Jan:
Why is that?

Kenneth:

We found that when FFmpeg scales multiple files simultaneously, like when creating an encoding ladder, it sometimes would bottleneck. While the capacity was good, it wasn’t great. If we tried Gstreamer, the capacity increased significantly enough that it made sense to use GStreamer for that workflow.

Server vs. Individual Cards

Figure 3. NETINT offers two servers populated with ten Quadras or T408s.
Seamless Client Onboarding - Hardware and Software Synergy - Kenneth Robinson from NETINT

Jan:
Let’s switch gears a bit. What’s your experience with the server? What would you advise someone to buy a server fully loaded with Quadras or T408s versus buying the cards and installing them themselves?

Kenneth:

If you need a custom architecture, like adding GPUs for cloud gaming, you should buy the cards and install them yourself. If you intend to perform high-volume file-based transcoding or live streaming, you should consider either server.

Seamless Client Onboarding - Hardware and Software Synergy - Kenneth Robinson from NETINT

Jan:
So, if you’ve got a set application and you just want to get a device in and start working, the servers are a good option. If you’re going to customize your servers, buy the cards.

Kenneth:

Yes, that’s correct.

Seamless Client Onboarding - Hardware and Software Synergy - Kenneth Robinson from NETINT

Jan:
That’s all I have. Thanks for taking the time today.

Kenneth:

Thanks for having me.

Watch on-demand: Symposium on Building Your Live Streaming Cloud

Cloud services are an effective way to begin live streaming, but once you reach a particular scale, you may realize that you’re paying too much and can save significant OPEX by deploying your own transcoding infrastructure. The question is, how to get started? 

Build Your Own Live Streaming Cloud symposium was a huge hit, with many insights from industry insiders on how to build a live streaming cloud. Here are replays of the event. (For the best viewing experience, please watch from your desktop.)

From Cloud to Local Transcoding For Minimum Latency and Maximum Quality

From Cloud to Local Transcoding

Over the last ten years or so, most live productions have migrated towards a workflow that sends a contribution stream from the venue into the cloud for transcoding and delivery. For live events that need absolute minimum latency and maximum quality, it may be time to rethink that workflow, particularly if you’ve got multiple sharable inputs at the venue.

So says Bart Snoeks, Account & Partnership Director of THEO Technologies (“THEO”). By way of background, THEO invented and has commercially implemented the High-Efficiency Streaming Protocol (HESP), an adaptive HTTP- based video streaming protocol that enables sub-second end-to-end latency. You see how HESP compares to other low latency protocols in the table shown in Figure 1 from the HESP Alliance website – the organization focused on promoting and further advancing HESP.

Figure 1. HESP compared to other low latency protocols.

THEO has productized HESP as a real-time streaming service called THEOlive, which targets applications like live sports and betting, casino igaming, live auctions, and other events that require high-quality video at exceptionally low latency with delivery at scale. For example, in the case of in-play betting, cutting latency from 8 to 10 seconds (HLS) to under one second expands the betting window during the critical period just before the event.

When streaming casino games, ultra-low latency promotes fluent interactions between the players and ensures that all players see the turn of the cards in real time. When latency is lower, players can bet more quickly, increasing the number of hands that can be played.

According to Snoeks, a live streaming workflow that sends a contribution stream to the cloud for transcoding will always increase latency and can degrade quality as re-transcoding is needed. It’s especially poorly suited for stadium venues with multiple camera locations that want to enhance the attendee experience with multiple live feeds. In those latency-critical use cases you are actually adding network latency with a roundtrip to and from the cloud. Instead, it makes much more sense creating your encoding ladder and packaging on-site and pulling that directly from the origin to a private CDN for delivery.

Let’s take a step back and examine these two workflows.

Live Streaming Workflows

As stated at the top, most live-streaming productions encode a single contribution stream on-site and send that into the cloud for transcoding to a full ladder, packaging, and delivery. You see this workflow in Figure 2.

Figure 2. Encoding a contribution stream on-site to deliver to the cloud for transcoding, packaging, and delivery

This schema has multiple advantages. First, you’re sending a single stream to the cloud, lowering bandwidth requirements. Second, you’re centralizing your transcoding assets in a single location in the cloud, which typically enables better utilization.

According to Snoeks, however, this workflow will add 200 to 500  milliseconds of latency at a minimum, depending on the encoding speed, quality, and contribution protocol. In addition, though high-quality contribution encoders can minimize generational loss from the contribution stream, lower-quality transcoders can noticeably degrade the quality of the final output. You also need a contribution encoder for each camera, which can jack up hardware costs in high-volume igaming and similar applications.

Instead, for some specific use cases, you should consider the workflow shown in Figure 3. Here, you transcode on-site and send the full encoding ladder to a public CDN for external delivery and to a private CDN or equivalent for local viewing. This decreases latency to a minimum and produces absolute top quality as you avoid the additional transcoding step.

From Cloud to Local Transcoding - Figure-2
Figure 3. Encoding and packaging the encoding ladder on site and transmitting the streams to a public CDN for external viewers and a private CDN for local viewers.

This schema is particularly useful for venues that want to enhance the in-stadium experience with multiple camera feeds. Imagine a stock car race where an attendee only sees his driver on the track once every minute or so. Encoding on-site might allow attendees to watch the camera view from inside their favorite driver’s car with near real-time latency. It might let golf fans follow multiple groups while parked at a hole or following their favorite player.

If you’re encoding input from many cameras, say in a casino or even racetrack environment, the cost of on-site encoding might be less than the cost of the individual contribution encoders. So, you get the best of all worlds, lower cost per stream, lower latency, higher quality, and a better in-person experience where applicable.

If you’re interested in learning about your transcoding options, check out our symposium Building Your Own Live Streaming Cloud, where you can hear from multiple technology experts discussing transcoding options like CPU-only, GPU, and ASIC-based transcoding and their respective costs, throughput, and density.

If you’re interested in learning more about HESP, THEO in general, or THEOlive, watch for an upcoming episode of Voices of Video, where I interview Pieter-Jan Speelman, CTO of THEO Technologies. We’ll discuss HESP’s history and evolution, the power of THEOlive real-time streaming technology, and how to use it in your live production stack. Make sure you don’t miss it!

Now ON-DEMAND: Symposium on Building Your Live Streaming Cloud

Get Free CAE on NETINT VPUs with Capped CRF

Capped CRF

NETINT recently added capped CRF to the rate control mechanism across our Video Processing Unit (VPU) product lines. With the wide adoption of content-adaptive encoding techniques (CAE), constant rate factor (CRF) encoding with a bit rate cap gained popularity as a lightweight form of CAE to reduce the bitrate of easy-to-encode sequences, saving delivery bandwidth with constant video quality. It’s a mode that we expect many of our customers to use, and this document will explain what it is, how it works, and how to get the most use from the feature.

In addition to working with H.264, HEVC, and AV1 on the Quadra VPU line, capped CRF works with H.264 and HEVC on the T408 and T432 video transcoders. This document details how to encode with capped CRF using the H.264 and HEVC codecs on Quadra VPUs, though most application scenarios apply to all codecs across the NETINT VPU lines.

What is Capped CRF and How Does it Work?

Capped CRF is a bitrate control technique that combines constant rate factor (CRF) encoding with a bit rate cap. Multiple codecs and software encoders support it, including x264 and x265 within FFmpeg. In contrast to CBR and VBR encoding, which encode to a specified target bitrate (and ignore output quality), CRF encodes to a specified quality level and ignores the bitrate.

CRF values range from 0-51, with lower numbers delivering higher quality at higher bitrates (less savings) and higher CRF values delivering lower quality levels at lower bitrates (more bitrate savings). Many encoding engineers will utilize values spanning 21 to 23. Which is right for you? As you will read below, your desired quality and bitrate savings balance determines the best value for your use case.

For example, with the x264 codec, if you transcode to CRF 23, the encoder typically outputs a file with a VMAF quality of 93-95. If that file is a 4K60 soccer match, the bitrate might be 30 Mbps. If it’s a 1080p talking head, it might be 1.2 Mbps. Because CRF delivers a known quality level, it’s ideal for creating archival copies of videos. However, since there’s no bitrate control, in most instances, CRF alone is unusable for streaming delivery.

When you combine CRF with a bit rate cap, you get the best of both worlds, a bit rate reduction with consistent quality for easy-to-encode clips and similar to CBR quality and bitrate or more complex clips.

Here’s how capped CRF could be used with the Quadra VPU:

ffmpeg -i input crf=23:vbvBufferSize=1000:bitrate=6000000 output

The relevant elements are:

  • CRF=23 – sets the quality target at around 95 VMAF

  • vbvBufferSize=1000 – sets the VBV buffer to one second (1000 ms)

  • bitrate=6000000 – caps the bitrate at 6 Mbps.

These commands would produce a file that targets close to 95 VMAF quality but, in all cases, peaks at around 6 Mbps.

For a simple-to-encode talking head clip, Quadra produced a file with an average bitrate of 1,274 kbps and a VMAF score of 95.14. Figure 1 shows this output in a program called Bitrate Viewer. Since the entire file is under the 6 Mbps cap, the CRF value controls the bitrate throughout.

Encoding this clip with Quadra using CBR at 6 Mbps produced a file with a bit rate of 5.4 Mbps and a VMAF score of 97.50. Multiple studies have found that VMAF scores above 95 are not perceptible by viewers, so the extra 2.26 VMAF score doesn’t improve the viewer’s quality of experience (QoE). In this case, capped CRF reduces your bandwidth cost by 76% without impacting QoE.

Figure 1. Capped CRF encoding a simple-to-encode video in Bitrate Viewer.

You see this in Figure 2, showing the capped CRF frame with a VMAF score of 94.73 on the left and the CBR frame with a VMAF score of 97.2 on the right. The video on the right has a bit rate over 4 Mbps larger than the video on the left, but the viewer wouldn’t notice the difference.

Figure 2. Frames from the talkinghead clip. Capped CRF at 1.23 Mbps on the left,
CBR at 5.4 Mbps on the right. No viewer would notice the difference.

Figure 3 shows capped CRF operation with a hard-to-encode American football clip. The average bitrate is 5900 kbps, and the VMAF score is 94.5. You see that the bitrate for most of the file is pushing against the 6 Mbps cap, which means that the cap is the controlling element. In the two regions where there are slight dips, the CRF setting controls the quality.

Figure 3. Capped CRF encoding a hard-to-encode video in Bitrate Viewer.

In contrast, the CBR encode of the football clip produced a bit rate of 6,013 kbps and a VMAF score of  94.73. Netflix has stated that most viewers won’t notice a VMAF differential under 6 points, so a viewer would not perceive the .25 VMAF delta between the CBR and capped CRF file. In this case, capped CRF reduced delivery bandwidth by about 2% without impacting QoE.

Of course, as shown in Figure 2, the two-minute segment tested was almost all high motion. The typical sports broadcast contains many lower-motion sequences, including some commercials, cutting to the broadcasters, or during timeouts and penalty calls. In most cases, you would expect many more dips like those shown in Figure 2 and more substantial savings.

So, the benefits of capped CRF are as follows:

  • You can use a single ladder for all your content, automatically saving bitrate on easy-to-encode clips and delivering the equivalent QoE on hard-to-encode clips.
  • Even if you modify your ladder by type of content, you should save bandwidth on easy-to-encode regions within all broadcasts without impacting QoE.
  • Provides the benefit of CAE without the added integration complexity or extra technology licensing cost. Capped CRF is free across all NETINT VPU and video transcoder products.

Producing Capped CRF

Using the NETINT Quadra VPU series, the following commands for H.264 capped CRF will optimize video quality and deliver a file or stream with a fully compliant VBV buffer. As noted previously, this command string with the appropriate modifications to codec value will work across the entire NETINT product line. For example, to output HEVC, change -c:v h264_ni_quadra_enc to -c:v h265_ni_quadra_enc.

Here’s the command string.

ffmpeg -y -i input.mp4 -y -c:v h264_ni_quadra_enc -xcoder-params “gopPresetIdx=5:RcEnable=0:crf=23:intraPeriod=120:lookAheadDepth=10:cuLevelRCEnable=1:v
bvBufferSize=1000:bitrate=6000000:tolCtbRcInter=0:tolCtbRcIntra=0:zeroCopyMode=0″ output.mp4

Here’s a brief explanation of the encoding-related switches.

  • -c:v h264_ni_quadra_enc -xcoder-params – Selects Quadra’s H.264 codec and identifies the codec commands identified below.

  • gopPresetIdx=5 – this chooses the Group of Pictures (GOP) pattern, or the mixture of B-frame and P-frames within each GOP. You should be able to adjust this without impacting capped CRF performance.

  • RcEnable=0 – this disables rate control. You must use this setting to enable capped CRF.

  • crf=23 – this chooses the CRF value. You must include a CRF value within your command string to enable capped CRF.

  • intraPeriod=120 – This sets the GOP size to four seconds which we used for all tests. You can adjust this setting to your normal target without impacting CRF operation.

  • lookAheadDepth=10 – This sets the lookahead to 10 frames. You can adjust this setting to your normal target without impacting CRF operation.

  • cuLevelRCEnable=1 – this enables coding unit-level rate control. Do not adjust this setting without verifying output quality and VBV compliance.

  • vbvBufferSize=1000 – This sets the VBV buffer size. You must set this to trigger capped CRF operation.

  • bitrate=6000000 – This sets the bitrate. You must set this to trigger capped CRF operation. You can adjust this setting to your target without impacting CRF operation.

  • tolCtbRcInter=0 – This defines the tolerance of CU-level rate control for P-frames and B-frames. Do not adjust this setting without verifying output quality and VBV compliance.

  • tolCtbRcIntra=0 – This sets the tolerance of CU level rate control for I-frames. Do not adjust this setting without verifying output quality and VBV compliance.

  • zeroCopyMode=0 – this enables or disables the libxcoder zero copy feature. Do not adjust this setting without verifying output quality and VBV compliance.

You can access additional information about these controls in the Quadra Integration and Programming Guide.

Choosing the CRF Value and Bitrate Cap – H.264

Deploying capped CRF involves two significant decisions, choosing the CRF value and setting the bitrate cap. Choosing the CRF value is the most critical decision, so let’s begin there.

Table 1 shows the bitrate and VMAF quality of ten files encoded with the H.264 codec using the CRF values shown with a 6 Mbps cap and using CBR encoding with a 6 Mbps cap. The table presents the easy-to-encode files on top, showing clip-specific results and the average value for the category. The Delta from CBR shows the bitrate and VMAF differential from the CBR score. Then the table does the same for hard-to-encode clips, showing clip-specific results and the average value for the category. The bottom two rows present the overall average bitrate and VMAF values and the overall savings and quality differential from CBR.

Capped CRF - Table 1. CBR and capped CRF bitrates and VMAF scores for H.264 encoded clips.
Table 1. CBR and capped CRF bitrates and VMAF scores for H.264 encoded clips.

As mentioned, with CRF, lower values produce higher quality. In the table, CRF 19 produces the highest quality (and lowest bitrate savings), and CRF 27 delivers the lowest quality (and highest bitrate savings). What’s the right CRF value? The one that delivers the target VMAF score for your typical clips for your target audience.

For the test clips shown, CRF 19 produces an average quality of well over 95; as mentioned above, VMAF scores beyond 95 aren’t perceivable by the average viewer, so the extra bandwidth needed to deliver these files is wasted. Premium services should choose CRF values between 21-23 to achieve the top rung quality of around 95 VMAF scores. These deliver more significant bandwidth savings than CRF 19 while preserving the desired quality level. In contrast, commodity services should experiment with higher values like 25-27 to deliver slightly lower VMAF scores while achieving more significant bandwidth savings.

What bitrate cap should you select? CRF sets quality, while the bitrate cap sets the budget. In most cases, you should consider using your existing cap. As we’ve seen, with easy-to-encode clips, capped CRF should deliver about the same quality of experience with the potential for bitrate savings. For hard-to-encode clips, capped CRF should deliver the same QoE with the potential for some bitrate savings on easy-to-encode sections of your broadcast.

Note that identifying the optimal CRF value will vary according to the complexity of your video files, as well as frame rate, resolution, and bitrate cap. If you plan to implement capped CRF with Quadra or any encoder, you should run similar tests on your standard test clips using your encoding parameters and draw your own conclusions.

Now let’s examine capped CRF and HEVC.

Choosing the CRF Value and Bitrate Cap – HEVC

Table 2 shows the results of HEVC encodes using CBR at 4.5 Mbps and the specified CRF values with a cap of 4.5 Mbps. With these test clips and encoding parameters, Quadra’s CRF values produce nearly the same result, with CRF values 21-23 appropriate for premium services and 25 – 27 good settings for UGC content.

Capped CRF - Table 2. CBR and capped CRF bitrates and VMAF scores for HEVC encoded clips.
Table 2. CBR and capped CRF bitrates and VMAF scores for HEVC encoded clips.

Again, the cap is yours to set; we arbitrarily reduced the H.264 bitrate cap of 6 Mbps by 25% to determine the 4.5 Mbps cap for HEVC.

Capped CRF Performance

Note that as currently tested, capped CRF comes with a modest performance hit, as shown in Table 3. Specifically, in CBR mode, Quadra output twenty 1080p30 H.264-encoded streams. This dropped to sixteen using capped CRF, a reduction of 20%.

For HEVC, throughput dropped from twenty-three to eighteen 1080p30 streams, a reduction of about 22%. We performed all tests using CRF 21, with a 6 Mbps cap for H.264 and 4.5 Mbps for HEVC. Note that these are early days in the CRF implementation, and it may be that this performance delta is reduced or even eliminated over time.

Capped CRF - Table 3. 1080p30 outputs produced using the techniques shown.
Table 3. 1080p30 outputs produced using the techniques shown.

We installed the Quadra in a workstation powered by a 3.6 GHz AMD Ryzen 5 5600X 6-Core Processor running Ubuntu 18.04.6 LTS with 16 GB of RAM. As you can see in the table, we also tested output for the x264 codec in FFmpeg using the medium and veryfast presets, producing two and five 1080p30 outputs, respectively. For x265, we tested using the medium and ultrafast presets and the workstation produced one and three 1080p30 streams.

Even at the reduced throughput, Quadra’s CRF output dwarfs the CPU-only output. When you consider that the NETINT Quadra Video Server packs ten Quadra VPUs into a single 1RU form factor, you get a sense of how VPUs offer unparalleled density and the industry’s lowest cost per stream and power consumption per stream.

Bandwidth is one of the most significant costs for all live-streaming productions. In many applications, capped CRF with the NETINT Quadra delivers a real opportunity to reduce bandwidth cost with no perceived impact on viewer quality of experience.

From Cloud to Control. Building Your Own Live Streaming Platform

Cloud services are an effective way to begin live streaming. Still, once you reach a particular scale, it’s common to realize that you’re paying too much and can save significant OPEX by deploying transcoding infrastructure yourself. The question is, how to get started?

NETINT’s Build Your Own Live Streaming Platform symposium gathers insights from the brightest engineers and game-changers in the live-video processing industry on how to build and deploy a live-streaming platform.

In just three hours, we’ll cover the following:

  • Hardware options for live transcoding and encoding to cut costs by as much as 80%.
  • Software options for producing, delivering, and playing your live video streams.
  • Co-location selection criteria to achieve cloud-like performance with on-premise affordability.

You’ll also hear from two engineers who will demystify the process of assembling a live-streaming facility, how they identified and solved key hurdles, along with real costs and performance data.

Cloud? Or your own hardware?

It’s clear to many that producing live streams via a public cloud like AWS can be vastly more expensive than owning your hardware. (You can learn more by reading “Cloud or On-Premises? The Streaming Dilemma” and “How to Slash CAPEX, OPEX, and Carbon Emissions Using the NETINT T408 Video Transcoder”). 

To quote serial entrepreneur David Hansson, who recently migrated two SaaS services from the cloud to on-premise, “Don’t let the entrenched cloud interests dazzle you into believing that running your own setup is too complicated. Everyone and their dog did it to get the internet off the ground, and it’s only gotten easier since.” 

For those who have only operated in the cloud, there’s fear of the unknown. Fear buying hardware transcoders, selecting the right software, and choosing the best colocation service. So, we decided to fight fear with education and host a symposium to educate streaming engineers on all these topics.  

“Building Your Own Live Streaming Cloud” will uncover how owning your encoding stack can slash operating costs and boost performance with minimal CAPEX.

Learn to select the optimal transcoding hardware, transcoding and packaging software, and colocation facilities. We’ll also discuss strategies to reduce carbon emissions from your transcoding engine. 

This FREE virtual event takes place on August 17th, from 11:00 AM – 2:15 PM EST.

Five issues tackled by nine experts:

Transcoding Hardware Options:

Learn the pros and cons of CPU, GPU, and ASIC-based transcoding via detailed throughput and cost examples shared by Kenneth Robinson, Manager of Field Application Engineers at NETINT Technologies. Then Ilya Mikhaelis, Streaming Backend Tech Lead at Mayflower, will describe his company’s journey from CPU to GPU to ASICs, covering costs, power consumption, latency, and density metrics.

Software Options:

Jan Ozer from NETINT will identify the three categories of transcoding software: multimedia frameworks, media servers, and other tools. Then, you’ll hear from experts in each category, starting with Romain Bouqueau, founder of Motion Spell, who will discuss the capabilities of the GPAC multimedia framework. Barry Owen, Chief Solutions Architect at Wowza, will discuss Wowza Streaming Engine’s suitability for private clouds. Lastly, Adrian Roe, Director at Id3as, developer of Norsk, will demonstrate Norsk’s simple, scripting-based operation, and extensive production and transcoding features.

Housing Options:

Once you select your hardware and software, the next step is finding the right co-location facility to house your live streaming infrastructure. Kyle Faber, with experience in building Edgio’s video streaming infrastructure, will guide you through the essential factors to consider when choosing a co-location facility.

Minimizing the Environmental Impact:

As responsible streaming professionals, it’s essential to address the environmental impact of our operations. Barbara Lange, Secretariat of Greening of Streaming, will outline actionable steps video engineers can take to minimize power consumption when acquiring and deploying transcoding servers.

Pulling it All Together:

Stef van der Ziel, founder of live-streaming pioneer Jet-Stream, will share lessons learned from his experience in creating both Jet-Stream’s private cloud and cloud transcoding solutions for customers. In his closing talk, Stef will demystify the process of choosing hardware, software, and a hosting facility, bringing all the previous discussions together into a cohesive plan.

Full Agenda:

11:00 am. – 11:10 am EST

Introduction (10 minutes):
Mark Donnigan, Head of Strategic Marketing at NETINT Technologies
Welcome, overview, and what you will learn.

 

11:10 am. – 11:40 am EST

Choosing transcoding hardware (30 minutes):
Kenneth Robinson, Manager of Field Application Engineers at NETINT Technologies
You have three basic approaches to transcoding, CPU-only, GPU, and ASICs. Kenneth outlines the pros and cons of each approach with extensive throughput and CAPEX and OPEX examples for each.

 

11:40 am. – 12:00 pm EST

From CPU to GPU to ASIC: Our Transcoding Journey (20 minutes):
Ilya Mikhaelis, Streaming Backend Tech Lead at Mayflower
Charged with supporting very high-volume live transcoding operations, Ilya started with libx264 software transcoding, which consumed massive power but yielded low stream density per server. Then he experimented with GPUs and other hardware and ultimately transitioned to an ASIC-based solution with much lower power consumption and much higher stream density per server. Ilya will detail the costs, power consumption, and density of all options, providing both data and an invaluable evaluation framework.

 

12:00 pm. – 12:10 pm EST

Choosing your live production software (10 minutes): 
Jan Ozer, Senior Director of Video Technology at NETINT Technologies
The core of every live streaming system is transcoding and packaging software. This comes in many shapes and sizes, from open-source software like FFmpeg and GPAC, to streaming servers like Wowza, and production systems like Norsk. Jan discusses these multiple options so you can cohesively and affordably build your own live-streaming ecosystem.

 

12:10 pm. – 1:10 pm EST

Speed Round (60 minutes):
20-minute presentations from GPAC, Wowza, and NORSK.
Speakers from GPAC, Wowza, and NORSK discussing the features, functions, operational paradigms, and cost structure of their live software offering.

Speakers include:

  • Adrian Roe, CEO at id3as, Product: Norsk, Title: Make Live Easy with NORSK SDK
  • Romain Bouqueau, Founder and CEO, Motion Spell (home for GPAC Licensing), Product: GPAC Title of Talk: Deploying GPAC for Transcoding and Packaging
  • Barry Owen, Chief Solutions Architect at Wowza, Title of Talk: Start Streaming in Minutes with Wowza Streaming Engine



1:10 pm. – 1:40 pm EST

Choosing a co-location facility (30 minutes): 
Kyle Faber, Senior Director of Product Management at Edgio.
Once you’ve chosen your hardware and software, you need a place to install them. If you don’t have your own connected data center, you may consider a colocation facility. In his talk, Kyle addresses the key factors to consider when choosing a co-location facility for your live streaming infrastructure.

 

1:40 pm. – 1:55 pm EST

How to Greenify Your Encoding Stack (15 minutes):
Barbara Lange, Secretariat of Greening of Streaming.
Learn how video streaming companies can work to significantly reduce their energy footprint and contribute to a greener streaming industry. Implement hardware and infrastructure optimization using immersion cooling and data center design improvements to maximize energy efficiency in your streaming infrastructure.

 

1:55 pm. – 2:15 pm EST

Closing Keynote (20 minutes):
Stef van der Ziel, Founder Jet-Stream
Jet-stream has delivered streaming solutions since its launch in 1994 and offers its own live streaming platform. One focus has been creating custom transcoding solutions for customers seeking to create their own private cloud for various applications. In his closing talk, Stef will demystify the process of choosing hardware, software, and a hosting facility and wrap a pretty bow around all previous presentations.

Co-location for Optimized, Sustainable Live Streaming Success

Choosing a co-location facility

If you decide to buy and run your transcoding servers versus a public cloud, you must choose where to host the servers. If you have a well-connected data center, that’s an option. But if you don’t, you’ll want to consider a co-location facility or co-lo.

A co-location facility is a data center that rents space to third parties for servers and other computing hardware. This rented space typically includes the physical area for the hardware (often measured in rack units or cabinets) and the necessary power, cooling, and security.

While prices vary greatly, in the US, you can expect to pay between $50 – $200 per month per RU, with prices ranging from $60 – $250 per RU in Europe, $80 – $300 per month per RU in South American, and $70 – $280 per month per RU in Asia.

Co-location facilities will provide a high-bandwidth internet connection, redundant power supplies, and sophisticated cooling systems to ensure optimal performance and uptime for hosted equipment. They also include robust physical security measures, including surveillance cameras, biometric access controls, and round-the-clock security personnel.

At a high level, businesses use co-location facilities to leverage economies of scale they couldn’t achieve on their own. By sharing the infrastructure costs with other tenants, companies can access high-level data center capabilities without a significant upfront investment in building and maintaining their facility.

Choosing a Co-lo for Live Streaming

Choosing a co-lo facility for any use involves many factors. However, live streaming demands require a focus on a few specific capabilities. We discuss these below to help you make an informed decision and maximize the efficiency and cost-effectiveness of your live-streaming operations.

Network Infrastructure and Connectivity

Live streaming requires high-performance and reliable network connections. If you’re using a particular content delivery network, ensure the link to the CDN is high performing. Beyond this, consider a co-lo with multiple (and redundant) high-speed connections to multiple top-tier telecom and cloud providers, which can ensure your live stream remains stable, even if one of the connections has issues.

Multiple content distribution providers can also reduce costs by enabling competitive pricing. If you need to connect to a particular cloud provider, perhaps for content management, analytics, or other services, make sure these connections are also available.

Geographic Location and Service

Choosing the best location or locations is a delicate balance. From a pure quality of experience perspective, facilities closer to your target audience can reduce latency and ensure a smoother streaming experience. However, during your launch, cost considerations may dictate a single centralized location that you can supplement over time with edge servers near heavy concentrations of viewers.

During the start-up phase and any expansion, you may need access to the co-lo facility to update or otherwise service existing servers and install new ones. That’s simpler to perform when the facility is closer to your IT personnel.

If circumstances dictate choosing a facility far from your IT staff, consider choosing a provider with the necessary managed services. While the services offered will vary considerably among the different providers, most locations provide hardware deployment and management services, which should cover you for expansion and maintenance.

Similarly, live streaming operations usually run round-the-clock, so you need a facility that offers 24/7 technical support. A highly responsive, skilled, and knowledgeable support team can be crucial in resolving any unexpected issues quickly and efficiently.

Scalability

Your current needs may be modest, but your infrastructure needs to scale as your audience grows. The chosen co-lo facility (or facilities) should have ample space and resources to accommodate future growth and expansion. Check whether they have flexible plans allowing upgrades and scalability as needed.

Redundancy and Disaster Recovery

In live streaming, downtime is unacceptable. Check for guarantees in volatile coastal or mountain regions that data centers can withstand specific types of disasters, like floods and hurricanes.

When disaster strikes, the co-location facility should have redundant power supplies, backup generators, and efficient cooling systems to prevent potential hardware failures. Check for procedures to protect equipment, backup data, and other steps to minimize the risk and duration of loss of service. For example, some facilities offer disaster recovery services to help customers restore disrupted environments. Walk through the various scenarios that could impact your service and ensure that the providers you consider have plans to minimize disruption and get you up and running as quickly as possible.

Security and Compliance

Physical and digital security should be a primary concern, particularly if you’re streaming third-party premium content that must remain protected. Ensure the facility uses modern security measures like CCTV, biometric access, fire suppression systems, and 24/7 on-site staff. Digital security should include robust firewalls, DDoS mitigation services, and other necessary precautions.

Environment Sustainability

An essential requirement for most companies today is environmental sustainability. ASIC-based transcoding is the most power-efficient of all transcoding alternatives. We believe that all companies should work to reduce their carbon footprints. Accordingly, choosing a co-location facility committed to energy efficiency and renewable energy sources will lower your energy costs and align with your company’s environmental goals.

Remember, the co-location facility is an extension of your live-streaming business. With the proper infrastructure, you can ensure high-quality, reliable live streams that satisfy your audience and grow your business. Take the time to visit potential facilities, ask questions, and thoroughly evaluate before deciding.

Cloud services are an effective way to begin live streaming. Still, once you reach a particular scale, it’s common to realize that you’re paying too much and can save significant OPEX by deploying transcoding infrastructure yourself. The question is, how to get started?

NETINT’s Build Your Own Live Streaming Platform symposium gathers insights from the brightest engineers and game-changers in the live-video processing industry on how to build and deploy a live-streaming platform.

In just three hours, we’ll cover the following:

  • Hardware options for live transcoding and encoding to cut costs by as much as 80%.
  • Software options for producing, delivering, and playing your live video streams.
  • Co-location selection criteria to achieve cloud-like performance with on-premise affordability.

You’ll also hear from two engineers who will demystify the process of assembling a live-streaming facility, how they identified and solved key hurdles, along with real costs and performance data.

Denser / Leaner / Greener - Symposium on Building Your Live Streaming Cloud

Build Your Own Streaming Infrastructure – Software

Build Your Own Streaming Infrastructure - Article by Jan Ozer from NETINT Technologies

My assumption is that you’re currently using a cloud-based service like AWS for your live streaming and are seeking to reduce costs by buying your own transcoding hardware, installing the necessary software, and hosting the server on-premises or in a co-location facility. This article covers the software side.

To begin, let’s acknowledge that AWS and other cloud services have created a well-featured and highly integrated ecosystem for live streaming and distribution. The downside is the cost.

To illustrate the potential savings, I’ll refer to this article, which compared the cost of producing 21 H.264 ladders and 27 HEVC ladders via AWS MediaLive and by encoding with NETINT’s recently launched Logan Video Server. As you can see in the table, MediaLive costs around $400K for H.264 and $1.8 million for HEVC, as compared to $11,140 in both cases for the co-located server.

Streaming Infrastructure - Table from article 'cloud or on-prem'
Table 1. Five-year cost comparison . AWS MediaLive pricing compared to the NETINT Server

While there are less expensive options available inside and outside of AWS, whenever you pay for hardware by the minute or hour of production, you’re vastly overpaying as compared to owning your own hardware. Sure, you say, but it’s so easy compared to running your own hardware.

If that’s a concern, here are some comforting words from David Heinemeier Hansson, co-owner, and CTO of software developer 37signals, the developer of the project management platform Basecamp and email service Hey. Recently, Hansson wrote  Why we’re leaving the cloud, a blog that detailed his companies’ decisions to do just that. Here’s the relevant quote.

Up until very recently, everyone ran their own servers, and much of the progress in tooling that enabled the cloud is available for your own machines as well. Don’t let the entrenched cloud interests dazzle you into believing that running your own setup is too complicated. Everyone and their dog did it to get the internet off the ground, and it’s only gotten easier since.

My wife has chihuahuas, and given their difficulties with potty training, I seriously doubt they could do it, but you get the point. To paraphrase FDR, all you have to fear is fear itself. The bottom line is that running your own live streaming service should cost relatively little CAPEX, will save significant OPEX, and won’t be nearly as challenging as you might be fearing.

Let’s look at your options for the software required to run your homegrown system.

Transcoding and Packaging Software

Figure 1 shows the minimum software and infrastructure needed for a live-streaming service. Presumably, you’ve already got the live production covered, and since AWS doesn’t offer a player, you have that piece addressed as well. You’ll need a content delivery network to deliver your streaming video, but you can continue to use CloudFront or other CDN. The software that you absolutely have to replace is the live transcoding and packaging component.

Here you have three options; multimedia frameworks, media servers, and “other.” Let’s discuss each in turn.

Multimedia Frameworks

Multimedia frameworks are software libraries, tools, and APIs that provide a set of functionalities and capabilities for multimedia processing, manipulation, and streaming. The best-known framework is FFmpeg, followed by GStreamer and GPAC, and they are all available open source.

Build Your Own Streaming Infrastructure - Software- diagram-2
Figure 1. Netflix uses GPAC for its packaging,
a significant technology endorsement for GPAC
and for multimedia frameworks in general.

Multimedia frameworks excel in projects at both ends of the complexity spectrum. For simple projects, like transcoding an input stream to an encoding ladder, you can create a script that inputs the stream, transcodes, and hands the packaged output streams off to a CDN in a matter of minutes. You can use the script to process thousands of simultaneous jobs, all at no charge.

At the other end of the spectrum, these frameworks also excel at complex jobs with idiosyncratic custom requirements that likely aren’t available in a server or commercial software product. The development, maintenance, and modification costs are considerable, but you get maximum feature flexibility if you’re willing to pay that cost.

What you don’t get with these tools is a user interface or simple configuration options – you start with a blank slate and must program in all desired features. What could be as simple as checking a checkbox in a streaming media server could require dozens or even thousands of lines of code in a multimedia framework.

Which takes us to streaming media servers.

Streaming Media Servers

The next category of products are streaming media servers, and it includes Wowza Streaming Engine, Nimble Streamer, and two open-source servers, Red5 and Ant Media Server. These servers tend to excel for most productions in the middle of the complexity spectrum and offer multiple advantages over multimedia frameworks.

There are several reasons why you might choose to use a streaming server over a multimedia framework, including a simplified setup and configuration. Most streaming servers provide out-of-the-box streaming solutions with pre-configured settings and management interfaces that simplify the setup and configuration process. While not all offer GUIs, those that don’t offer simple option selection in configuration files.

Build Your Own Streaming Infrastructure - Software- diagram-3
Figure 2. Wowza Streaming Engine is a highly regarded streaming server

As mentioned above, streaming servers often offer simpler access to advanced features that you’d have to craft by hand with a multimedia framework. They also offer better integration with third-party services like digital rights management (DRM) and content delivery networks. Between the simplified setup, easier access to features, and improved integration with other services, packaged servers can dramatically accelerate getting your live streaming service up and running.

Once you’re operational, you’ll appreciate management interfaces that monitor the health and performance of your streaming infrastructure, track viewer analytics, manage streaming workflows, and make real-time adjustments. If you’re in a dynamic demand environment, some streaming servers offer built-in scalability features and load balancing to manage the load over multiple hard transcoding resources. You’d have to build all that by hand or with plug-ins if using a multimedia framework.

The two potential downsides of streaming servers are cost and customizability. You’ll have to pay a monthly fee for some versions of these servers, and you may find it complicated or nearly impossible to add what you might consider to be essential features.

Other Streaming-Capable Programs

Most companies building their own live-streaming infrastructures will implement either a multimedia framework or a streaming server, but there are other programs that incorporate the core encoding and packaging functions. One such program is Norsk from id3as. Norsk bills itself as “an SDK that enables developers to easily create amazing, dynamic live video workflows and deploy them at any scale.” As such, it combines both video production and streaming server-related functions

You see this in Figure 3. The top portion shows that Norsk supports the typical codecs and packaging formats deployed by live-streaming producers. At the bottom of the figure, you see that Norsk also offers production-oriented features like multiple camera support, graphics and overlays, and transitions.

Build Your Own Streaming Infrastructure - Software- diagram-4
Figure 3. Norsk offers both production and server-related functions.

Interestingly, Norsk doesn’t have a GUI, instead offering a high-level API to simplify configuration and operation, with a Workflow Visualizer component to view the running state of the application. In this fashion, Norsk attempts to provide the configurability of multimedia frameworks with the ease of operation of scripting-driven streaming media servers.

Finding a program like Norsk that combines transcoding and packaging with other essential streaming-related functions makes a lot of sense; there’s one less vendor to onboard and one less product to learn and support. As remote production becomes more common, we expect more programs like Norsk to become available.

Those are your high-level options. If you’re interested in learning more about these and other programs that can drive encoding and packaging for your live transcoder. You should plan to attend our upcoming symposium; details will be available in the next couple of weeks.