Norsk and NETINT: Elevating Live Streaming Efficiency

Norsk and NETINT
With the growing demand for high-quality viewing experiences and the heightened attention on cost efficiency and environmental impact,  hardware acceleration plays an ever-more-crucial role in live streaming. Here at NETINT, we want users to take full advantage of our transcoding hardware, so we’re pleased to announce that id3as NORSK now offers exceptionally efficient support for NETINT’s T408 and Quadra video processing unit (VPU) modules.

Here at NETINT, we want users to take full advantage of our transcoding hardware, so we’re pleased to announce that id3as NORSK now offers exceptionally efficient support for NETINT’s T408 and Quadra video processing unit (VPU) modules.

Using NETINT VPU’s, users can leverage the Norsk low-code live streaming SDK to achieve higher throughput and greater efficiency compared to running software on CPUs in on-prem or cloud configurations. Combined with Norsk’s proven high-availability track record, this makes it easy to deliver exceptional services with maximum reliability and performance at a never-before-available OPEX. 

NORSK AND NETINT

Norsk also takes advantage of Quadra’s hardware acceleration and onboard scaling to achieve complex compositions like picture-in-picture and resizing directly on the card. Even better, Norsk’s built-in ability to “do the right thing” also means that it knows when it can take advantage of hardware acceleration and when it can’t.  

 

For example, if you’re running Norsk on the T408, decoding will take place on the card, but Norsk will automatically utilize the host CPU for functions like picture-in-picture and resizing that the T408 doesn’t natively support, before returning the enriched media to the card for encoding (Scaling and resizing functions are native to Quadra VPUs so are performed onboard without the host CPU). 

 

“As founding members of Greening of Streaming, we’re keenly aware of the pressing need to focus on energy efficiency at every point of the video stack,” says Norsk CEO Adrian Roe. “By utilizing the Quadra and T408 VPU modules, users can reduce energy usage while achieving maximum performance even on compute-intensive tasks. With Norsk seamlessly running on NETINT hardware, live streaming services can consume as little energy as possible while delivering a fantastic experience to their customers.” 

“By utilizing the Quadra and T408 VPU modules, users can reduce energy usage while achieving maximum performance even on compute-intensive tasks. With Norsk seamlessly running on NETINT hardware, live streaming services can consume as little energy as possible while delivering a fantastic experience to their customers.” 

– Norsk CEO Adrian Roe. 

“Id3as has proven expertise in helping its customers produce polished, high-volume, compelling productions, and as a product, Norsk makes that expertise widely accessible,” commented Alex Liu, NETINT founder and COO. “With Norsk’s deep integration with our T408 and Quadra products, this partnership makes NETINT’s proven ASIC-based technology available to any video engineer seeking to create high-quality productions at scale.” 

“With Norsk’s deep integration with our T408 and Quadra products, this partnership makes NETINT’s proven ASIC-based technology available to any video engineer seeking to create high-quality productions at scale.”  

– Alex Liu, NETINT founder and COO.

Both Norsk and NETINT will be at IBC in Amsterdam, September 15-18. Click to request a meeting with Norsk, or NETINT, and/or visit NETINT at booth 5.A86

ON-DEMAND: Adrian Roe - Make Live Easy with NORSK SDK

Save Bandwidth with Capped CRF

Video engineers are constantly seeking ways to deliver high-quality video more efficiently and cost-effectively. Among the innovative techniques gaining traction is capped Constant Rate Factor (CRF) encoding, a form of Content-Adaptive Encoding (CAE), which NETINT recently introduced across our Video Processing Unit (VPU) product lines for x264 and x265. In this blog, we explore why capped CRF is essential for engineers seeking to streamline video delivery and save on bandwidth costs.

Capped CRF - The Efficient Encoding Solution

Capped CRF is a smart bitrate control technique that combines the benefits of CRF encoding with a bit rate cap. Unlike Variable Bitrate Encoding (VBR) and Constant Bitrate Encoding (CBR), which target specific bitrates, capped CRF targets a specific quality level controlled by the CRF value, with a bitrate cap applied if the encoder can’t meet the quality level below the bitrate cap.

A typical capped CRF command string might look like this:

crf 21    -maxrate 6MB

This tells the encoder to encode to CRF 21 quality, but don’t exceed 6 Mbps. Let’s see how this might work with the football video shown in the figure, which compares capped CRF at these parameters with a CBR file encoded to 6 Mbps.

NETINT - Bitrate Comparison - Capped CRF

With the x264 codec, CRF 21 typically delivers a VMAF score of around 95. With easy-to-encode sideline shots, the CRF value would control the encoding, delivering 95 VMAF quality at 2 Mbps, a substantial savings over CBR at 6 Mbps.

During actual plays, the 6 Mbps bitrate cap would control, delivering the same quality as CBR at 6 Mbps. So, capped CRF saves bandwidth with easy-to-encode scenes while delivering equivalent to CBR quality with hard-to-encode scenes.

Ease of Integration

As implemented within the NETINT product line, capped CRF requires no additional technology licensing or complex integration – you simply upgrade your products and change your encoding command string. This means that you can seamlessly implement the feature across NETINT’s VPUs without extensive adjustments or additional investments.

NETINT’s capped CRF is compatible with H.264 and HEVC, and AV1 coming (Quadra only), so you can use the feature across different codec options to suit your specific project requirements. Regardless of the codec used, capped CRF delivers consistent video quality with the potential for bandwidth savings, making it a valuable tool for optimizing video delivery.

A Game Changer

By deploying capped CRF, engineers can efficiently deliver high-quality video streams, enhance viewer experiences, and reduce operational expenses. As the demand for video streaming continues to grow, Capped CRF emerges as a game-changer for engineers striving to stay at the forefront of video delivery optimization.

You can read more about how capped CRF works here. You can read more about Quadra VPUs here, and T408 transcoders here.

Now ON-DEMAND: Symposium on Building Your Live Streaming Cloud

Simplify Building Your Own Streaming Cloud with GPAC

Romain Bouqueau is CEO of Motion Spell and one of the principal architects of the GPAC open-source software, one of the three software alternatives presented in the symposium. He spoke about the three challenges facing his typical customers: features, cost, and flexibility, and identified how GPAC delivers on each challenge.

Then, he illustrated these concepts with three impressive case studies: Synamedia/Quortex, Instagram, and Netflix. Overall, Romain made a strong case for GPAC as the transcoding/packaging element of your live streaming cloud.

Simplify Building Your Own Streaming Cloud with GPAC

NETINT Symposium - GPAC

Romain began his talk with an excellent summary of the situation facing many live-streaming engineers. “It’s a pleasure to discuss the challenges of building your own live-streaming cloud. Cloud services are convenient, but once you scale, you may realize that you’re paying too much and you are not as flexible as you’d like to be. I hope to convince you that the cost of customization that you have when using GPAC is actually an investment with a very interesting ROI if you make the right choices. That’s what we’re going to talk about.”

NETINT Symposium - GPAC - Figure 1. About Romain, GPAC, and Motion Spell.
Figure 1. About Romain, GPAC, and Motion Spell.

Then, he briefly described his background as a principal architect of the GPAC open-source software, which he has contributed to for over 15 years. In this role, Romain is known for his advocacy of open source and open standards and as a media streaming entrepreneur. His primary focus has been on GPAC, a multimedia framework recognized for its emphasis on modularity and standards compliance.

He described that GPAC offers tools for media content processing, inspection, packaging, streaming playback, and interaction. Unlike many multimedia frameworks that cater to 2D TV-like experiences, GPAC is characterized by versatility, controlled latency, and the ability to support various scenarios, including hybrid broadcast broadband setups, interactivity, scripting, virtual reality, and 3D scenes.

Romain’s notable achievements include streamlining the MPEG ISO-based media file format used in formats like MP4, CMAF, DASH, and HLS. His work earned recognition through a technology engineering EMMY award. To facilitate the wider use of GPAC, Romain established Motion Spell, which serves as a bridge between GPAC and its practical applications. Motion Spell provides consulting, support, and training, acting as the exclusive commercial licenser of GPAC.

During his introduction, Romain discussed challenges faced by companies in choosing between commercial solutions and open source for video encoding and packaging. He posited that many companies often lack the confidence and necessary skills to fully implement GPAC but emphasized that despite this, the implementation process is both achievable and simpler than commonly assumed.

He shared that his customers face three major challenges, features, cost, and flexibility, and addressed each in turn.

Features

NETINT Symposium - GPAC -  Figure 2. The three challenges facing those building their live streaming cloud.
Figure 2. The three challenges facing those building their live streaming cloud.

The first challenge Romain highlighted relates to features and capabilities. He advised the audience to create a comprehensive list that encompasses the needed capabilities, including codecs, formats, containers, DRMs, captions, and metadata management.

He also underscored the importance of seamless integration with the broader ecosystem, which involves interactions with external players, analytics probes, and specific content protocols. Romain noted that while some solutions offer user-friendly graphical interfaces, deeper configuration details often need to be addressed to accommodate diverse codecs, parameters, and use cases, especially at scale.

Highlighting Netflix’s usage of GPAC, Romain emphasized that GPAC is well-equipped to handle features and innovation, given its research and standardization foundation. He acknowledged that while GPAC is often a step ahead in the industry, it cannot implement everything alone. Thus, sponsorship and contributions from the industry are crucial for the continued development of this open-source software.

Romain explained that GPAC’s compatibility with the ecosystem is a result of its broad availability. Its role as a reference implementation, driven by standardization efforts, makes it a favored choice. Additionally, he mentioned that Motion Spell’s efforts have led to GPAC becoming part of numerous plugin systems across the industry.

Cost

The second challenge highlighted by Romain is cost optimization. He explained that costs are typically divided into Capital Expenditure (CAPEX) and Operational Expenditure (OPEX). He noted that GPAC, being written in the efficient C programming language, benefits from rigorous scrutiny from the open-source community, making it highly efficient. He acknowledged that while GPAC offers various features, each use case varies, leading to questions about resource allocation. Romain encouraged considerations like the need for CDNs for all channels and premium encoders for all content.

Regarding CAPEX, Romain mentioned integration costs associated with open-source software, emphasizing that some costs might be challenging to evaluate, such as error handling. He referenced the Synamedia/Quortex architecture as an example of efficient error management. Romain also addressed the misconception that open source implies free software, referencing a seminar he participated in that compared the costs of different options.

He shared an example of a broadcaster with a catalog of 100,000 videos and 500 concurrent streams. The CAPEX for packaging ranged from $100,000 to $200,000, depending on factors like developer rates and location, with running costs being relatively low compared to transcoding costs.

Romain revealed that, based on his research, open source consistently ranked as the most cost-efficient option or a close competitor across different use cases. He concluded that combining GPAC with Motion Spell’s professional services and efficient encoding appliances like NETINT‘s aligns well with the industry’s efficiency challenges.

Flexibility

The final challenge discussed by Romain was flexibility, emphasizing the importance of moving swiftly in a fast-paced environment. He described how Netflix successfully transitioned from SVOD to AVOD, adapted from on-demand to live streaming, switched from H.264 to newer codecs, and consolidated multiple containers into one over short time frames, contributing to their profitability. Romain underlined the potential for others to achieve similar success using GPAC.

He introduced a new application within GPAC called “gpac”, designed to build customized media pipelines. In contrast to historical GPAC applications that offered fixed media pipelines, this new “gpac” application enables users to create tailored pipelines to address specific requirements. This includes transcoding packaging, content protection, networking, and in general, any feature you need for your private cloud.

The Synamedia/Quortex “just-in-time everything” paradigm

NETINT Symposium - GPAC -  Figure 3. Motion Spell’s work with Quortex which was acquired by Synamedia.
Figure 3. Motion Spell’s work with Quortex, which was acquired by Synamedia.

Romain then moved on to the Synamedia/Quortex use case that illustrated the challenge of GPAC supplying comprehensive features. He described Quortex’s innovative “just-in-time everything” paradigm for media pipelines.

Unlike the traditional 24/7 transcoder that is designed to never fail and requires backup solutions for seamless switching, Quortex divides the media pipeline into small components that can fail and be relaunched when necessary. This approach is particularly effective for live streaming scenarios, offering low latency.

Romain highlighted that the Quortex approach is highly adaptable as it can run on various instances, including cloud instances that are cost-effective but might experience interruptions. The system generates content on-demand, meaning that when a user wants to watch specific content on a device, it’s either cached, already generated, or created just-in-time. This includes packaging, transcoding, and other media processing tasks.

Romain attributed the success of the development project to Quortex’s vision and talented teams, as well as the strategic partnership with Motion Spell. He also shared that after project completion, Synamedia acquired Quortex.

Instagram

NETINT Symposium - GPAC - Figure 4. GPAC helped Instagram cut compute times by 94%.
Figure 4. GPAC helped Instagram cut compute times by 94%.

The second use case addressed the challenge of cost and involved Instagram, a member of the Meta Group. According to Romain, Instagram utilized GPAC’s MP4Box to reduce video compute times by an impressive 94%. This strategic decision helped prevent a capacity shortage within just twelve months, ensuring the platform’s ability to provide video uploads for all users.

Romain presented Instagram’s approach as noteworthy because it emphasizes the importance of optimizing costs based on content usage patterns. The platform decided to prioritize transmission and packaging of content over transcoding, recognizing that a significant portion of Instagram’s content is watched only a few times. In this scenario, the cost of transcoding outweighs the savings on distribution expenses. As Romain explained, “It made more sense for them to package and transmit most content instead of transcoding it, because most of Instagram’s content is watched only a few times. The cost of transcoding, in their case, outweighs the savings on the distribution cost.”

According to Romain, this strategy aligns with the broader efficiency trend in the media tech industry. By adopting a combined approach, Instagram used lower quality and color profiles for less popular content, while leveraging higher quality encoders for content requiring better compression. This optimization was possible because Instagram controls its own encoding infrastructure, which underscores the value of open-source solutions in providing control and flexibility to organizations.

The computational complexity of GPAC’s packaging is close to a bit-for-bit copy, contributing to the 94% reduction in compute times. Romain felt that Instagram’s successful outcome exemplifies how open-source solutions like GPAC can empower organizations to make significant efficiency gains while retaining control over their systems.

Netflix

NETINT Symposium - GPAC - Figure 5. GPAC helped Netflix transition from SVOD to AVOD, from On-Demand to live, and from H264 to newer codecs.
Figure 5. GPAC helped Netflix transition from SVOD to AVOD,
from On-Demand to live, and from H264 to newer codecs.

The final use case addresses the challenge of flexibility and involves a significant collaboration between GPAC, Motion Spell, and Netflix. According to Romain, this collaboration had a profound impact on Netflix’s video encoding and packaging platform, and contributed to an exceptional streaming experience for millions of viewers globally.

At the NAB Streaming Summit, Netflix and Motion Spell took the stage to discuss the successful integration of GPAC’s open-source software into Netflix’s content operations. During the talk, Netflix highlighted the ubiquity of the ISO BMFF (MPEG ISO-based media file format) in their workflows and emphasized their commitment to open standards and innovation. The alignment between GPAC and Netflix’s goals allowed them to leverage GPAC’s innovations for free, thanks to sponsorships and prior implementations.

Romain explained how Netflix’s transformation from SVOD to AVOD, from On-Demand to live, and from H264 to newer codecs was facilitated by GPAC’s ease of integration and efficiency in operations. In this fashion, he asserted, the collaboration between Motion Spell and Netflix exemplifies the capacity of open-source solutions to drive innovation and adaptability.

Romain further described how GPAC’s rich feature set, rooted in research and standardization, offers capabilities beyond most publishers’ current needs. The unified “gpac” executable simplifies deployment, making it accessible for service implementation. Leveraging open-source principles, GPAC proves to be cost-competitive and easy to integrate. Motion Spell’s role in helping organizations maximize GPAC’s potential, as demonstrated with Netflix, underscores the practical benefits of the collaboration.

Romain summarized how GPAC’s flexibility empowers organizations to optimize and differentiate themselves rapidly. Examples like Netflix’s interactive Bandersnatch, intelligent previews, exceptional captioning, and accessibility enhancements showcase GPAC’s adaptability to evolving demands. Looking forward, Romain described how user feedback continues to shape GPAC’s evolution, ensuring its continued improvement and relevance in the media tech landscape.

With a detailed description of GPAC’s features and capabilities, underscored by very relevant case studies, Romain clearly demonstrated how GPAC can help live streaming publishers overcome any infrastructure-related challenge. And for those who would like to learn more, or need support or assistance integrating GPAC into their workflows, he invited them to contact him directly.

NETINT Symposium - GPAC

ON-DEMAND:
Romain Bouqueau, Deploying GPAC for Transcoding and Packaging