Skip to content

Beyond Traditional Transcoding: NETINT’s Pioneering Technology for Today’s Streaming Needs

Jan Ozer

Jan Ozer

is Senior Director of Video Marketing at NETINT.

Jan is also a contributing editor to Streaming Media Magazine , writing about codecs and encoding tools. He has written multiple authoritative books on video encoding, including ‘Video Encoding by the Numbers: Eliminate the Guesswork from your Streaming Video’ and ‘ Learn to Produce Video with FFmpeg: In Thirty Minutes or Less’ and has produced multiple training courses relating to streaming media production.

Welcome to our here’s-what’s-new-since-last-IBC-so-you-should-schedule-a-meeting-with-us blog post. I know you’ve got many of these to wade through, so I’ll be brief.
First, a brief introduction. We’re NETINT, the ASIC-based transcoding company. We sell standalone products like our T408 video transcoder and Quadra VPUs ( for video transcoding units) and servers with ten of either device installed. All offer exceptional throughput at an industry-low cost per stream and power consumption per stream. Our products are denser, leaner, and greener than any competitive technology.
They’re also more innovative. The first-generation T408 was the first ASIC-based hardware transcoder available for at least a decade, and the second-generation Quadra was the first hardware transcoder with AV1 and AI processing. Our Quadra shipped before Google and Meta shipped their first generation ASIC-based transcoders and they still don’t support AV1.
That’s us; here’s what’s new.

Capped CRF Encoding

We’ve added capped CRF encoding to our Quadra products for H.264, HEVC, and AV1, with capped CRF coming for the T408 and T432 (H.264/HEVC). By way of background, with the wide adoption of content-adaptive encoding techniques (CAE), constant rate factor (CRF) encoding with a bit rate cap gained popularity as a lightweight form of CAE to reduce the bitrate of easy-to-encode sequences, saving delivery bandwidth and delivering CBR-like quality on hard-to-encode sequences. Capped CRF encoding is a mode that we expect many of our customers to use.

Figure 1 shows capped CRF operation on a theoretical football clip. The relevant switches in the command string would look something like this:

-crf 21  -maxrate 6MB

This directs FFmpeg to deliver at least the quality of CRF 21, which for H.264 typically equals around a 95 VMAF score. However, the maxrate switch ensures that the bitrate never exceeds 6 Mbps.

As shown in the figure, in operation, the Quadra VPU transcodes the easy-to-encode sideline shots at CRF 21 quality, producing a bitrate of around 2 Mbps. Then, during actual high-motion game footage, the 6MB cap would control, and the VPU would deliver the same quality as CBR. In this fashion, capped CRF saves bandwidth with easy-to-encode scenes while delivering equivalent to CBR quality with hard-to-encode scenes.

Figure 1. Capped CRF in operation. Relatively low-motion sideline shots are encoded to CRF 21 quality (~95 VMAF), while the 6 Mbps bitrate cap controls during high-motion game footage. Transcoding.
Figure 1. Capped CRF in operation. Relatively low-motion sideline shots are encoded to CRF 21 quality (~95 VMAF), while the 6 Mbps bitrate cap controls during high-motion game footage.

By deploying capped CRF, engineers can efficiently deliver high-quality video streams, enhance viewer experiences, and reduce operational expenses. As the demand for video streaming continues to grow, Capped CRF emerges as a game-changer for engineers striving to stay at the forefront of video delivery optimization.

You can read more about capped CRF operation and performance in Get Free CAE on NETINT VPUs with Capped CRF.

Peer-to-Peer Direct Memory Access (DMA) for Cloud Gaming

Peer-to-peer DMA is a feature that makes the NETINT Quadra VPU ideal for cloud gaming. By way of background, in a cloud-gaming workflow, the GPU is primarily used to render frames from the game engine output. Once rendered, these frames are encoded with codecs like H.264 and HEVC.

Many GPUs can render frames and transcode to these codecs, so it might seem most efficient to perform both operations on the same GPU. However, encoding demands a significant chunk of the GPU’s resources, which in turn reduces overall system throughput. It’s not the rendering engine that’s stretched to its limits but the encoder.

What happens when you introduce a dedicated video transcoder into the system using normal techniques? The host CPU manages the frame transfer between the GPU and the transcoder, which can create a bottleneck and slow system performance.

Figure 2. Peer-to-peer DMA enables up to 200 720p60 game streams from a single 2RU server. Transcoding.
Figure 2. Peer-to-peer DMA enables up to 200 720p60 game streams from a single 2RU server.

In contrast, peer-to-peer DMA allows the GPU to send frames directly to the transcoder, eliminating CPU involvement in data transfers (Figure 2). With peer-to-peer DMA enabled, the Quadra supports latencies as low as 8ms, even under heavy loads. It also unburdens the CPU from managing inter-device data transfers, freeing it to handle other essential tasks like game logic and physics calculations. This optimization enhances the overall system performance, ensuring a seamless gaming experience.

Some NETINT customers are using Quadra and peer-to-peer DMA to produce 200 720p60 game streams from a single 2RU server, and that number will increase to 400 before year-end. If you’re currently assembling an infrastructure for cloud gaming, come see us at IBC.

Logan Video Server

NETINT started selling standalone PCIe and U.2 transcoding devices, which our customers installed into servers. In late 2022, customers started requesting a prepackaged solution comprised of a server with ten transcoders installed. The Logan Video Server is our first response.

Logan refers to NETINT’s first-generation G4 ASIC, which transcodes to H.264 and HEVC. The Logan Video Server, which launched in the first quarter of 2023, includes a SuperMicro server with a 32-core AMD CPU running Ubuntu 20.04 LTS and ten NETINT T408 U.2 transcoder cards (which cost $300 each) for $8,900. There’s also a 64-core option available for $11,500 and an 8-core option for $7,000.

The value proposition is simple. You get a break on price because of volume commitments and don’t have to install the individual cards, which is generally simple but still can take an hour or two. And the performance with ten installed cards is stunning, given the price tag.

You can read about the performance of the 32-core server model in my review here, which also discusses the software architecture and operation. We’ll share one table, which shows one-to-one transcoding of 4K, 1080p, and 720p inputs with FFmpeg and GStreamer.

At the $8,900 cost, the server delivers a cost per stream as low as $445 for 4K, $111.25 for 1080p, and just over $50 for 720p at normal and low latency. Since each T408 only draws 7 watts and CPU utilization is so low, power consumption is also exceptionally low.

Meet NETINT at IBC - Transcoding - Table-1
Table 1. One-to-one transcoding performance for 4K, 1080p, and 720p.

With impressive density, low power consumption, and multiple integration options, the NETINT Video Transcoding Server is the new standard to beat for live streaming applications. With a lower-priced model available for pure encoding operations and a more powerful model for CPU-intensive operations, the NETINT Logan server family meets a broad range of requirements.

Quadra Video Server

Once the Logan Video Server became available, customers started asking about a similarly configured server for NETINT’s Quadra line of video transcoding units (VPUs), which adds AV1 output, onboard scaling and overlay, and two AI processing engines. So, we created the Quadra Video Server.

This model uses the same Supermicro chassis as the Logan Video Server and the same Ubuntu operating system but comes with ten Quadra T1U U.2 form factor VPUs, which retail for $1,500 each. Each T1U offers roughly four times the throughput of the T408, performs on-board scaling and overlay, and can output AV1 in addition to H.264 and HEVC.

The CPU options are the same as the Logan server, with the 8-core unit costing $19,000, the 32-core unit costing $21,000, and the 64-core model costing $24,000. That’s 4X the throughput at just over 2x the price.

You can read my review of the 32-core Quadra Video Server here. I’ll again share one table, this time reporting encoding ladder performance at 1080p for H.264 (120 ladders), HEVC (140), and AV1 (120), and 4K for HEVC (40) and AV1 (30).

In comparison, running FFmpeg using only the CPU, the 32-core system only produced nineteen H.264 1080p ladders, five HEVC 1080p ladders, and six AV1 1080p ladders. Given this low-volume throughput at 1080p, we didn’t bother trying to duplicate the 4K results with CPU-only transcoding.

Figure 2. Encoding ladder performance of the Quadra Video Server.
Table 2. Encoding ladder performance of the Quadra Video Server.

Beyond sheer transcoding performance, the review also details AI-based operations and performance for tasks like region of interest transcoding, which can preserve facial quality in security and other relatively low-quality videos, and background removal for conferencing applications.

Where the Logan Video Server is your best low-cost option for high volume H.264 and HEVC transcoding, the Quadra Video Server quadruples these outputs, adds AV1 and onboard scaling and overlay, and makes AI processing available.

Come See Us at the Show

We now return to our normally scheduled IBC pitch. We’ll be in Stand 5.A86 and you can book a meeting by clicking here.

Figure 3. Book a meeting.

Now ON-DEMAND: Symposium on Building Your Live Streaming Cloud